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Abstract—CHAMP  (Camera, Hand lens And Microscope 
Probe)1,2 is a novel field microscope capable of color 
imaging with continuously variable spatial resolution from 
infinity imaging down to diffraction-limited microscopy (~3 
µm/pixel). As a robotic arm-mounted imager, CHAMP 
supports stereo-imaging with variable baselines, can 
continuously image targets at an increasing magnification 
during an arm approach, can provide precision range-finding 
estimates to targets, and can accommodate microscopic 
imaging of rough surfaces through a image filtering process 
called z-stacking. CHAMP was originally developed 
through the Mars Instrument Development Program (MIDP) 
in support of robotic field investigations, but may also find 
application in new areas such as robotic in-orbit servicing 
and maintenance operations associated with spacecraft and 
human operations. We overview CHAMP’s instrument 
performance and basic design considerations below. 
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1. INTRODUCTION 

Imaging over a wide range of spatial scales constitutes a 
fundamental aspect of many facets of aerospace exploration 
including robotics (e.g. reconnaissance, navigation, and 
instrument and tool placement), planetary sciences (e.g. 
geology, astrobiology) and engineering sciences (e.g. 
surface metrology).   

To provide a brief example of “lessons learned” for in-situ 
imaging, the recent Mars Exploration Rover (MER) mission 
is considered. Over the mission, the mast-mounted 
Panoramic Imager (Pancam) has been developed and 
utilized extensively to perform remote geologic investiga-
tions of surrounding terrain, provide context imaging for 
remote-sensing and contact instruments, assess rover 
hazards, and guide rover navigation and arm placement. The 
Microscopic Imager (MI), an arm-mounted hand-lens for the 
MER investigation, has been an essential instrument for 
investigations into the microscale realm of Mars. 
Specifically, tabular vugs, spheroidal concretions, and 
finely-layered rippled bedforms have been imaged with the 
MI to support the conclusion that a shallow aqueous and 
salt-rich environment existed when sediments were 
deposited at the Meridiani landing site. Despite this utility, 
at the Gusev Crater landing site, it was inferred that a 
substantial fraction of particles were too small to be resolved 
with the MI. Furthermore, the utilization of ambient lighting 
conditions restricted MI operations to optimum lighting 
conditions. Finally, the MI’s lack-of-color (monochromatic) 
imaging put a constraint on data interpretation [1-6]. 

Current spaceflight imagers have rather limited fo-
cus/magnification ranges with imaging performance as 
follows: 
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1) Pancam – 0.27 mrad/pixel. 8 color filters per 
imager. 2 imagers for stereo-imaging with fixed 
baseline. No active illumination. Mass ~1kg. [6] 

2) MER MI  - Spatial resolution of 30 µm/pixel. No 
active illumination. Mass of ~0.450kg [7]. 

3) Robotic Arm Camera (RAC) for the 2007 Phoenix 
Mars Scout lander robotic arm – Spatial resolution 
of 23 µm/pixel. Active illumination [8, 9]. 

4) Fixed focus MECA microscope on the Mars 2001 
lander (Phoenix 2007). Spatial resolution of 4 
µm/pixel. Multiple LED illumination [9]. 

5) Beagle 2 microscope – Spatial resolution of 4 
µm/pixel. Multiple LED illumination [10]. 

2. CHAMP OVERVIEW 

CHAMP (Camera, Handlens, And Microscope Probe) is a 
new high-spatial-resolution, multi-band field camera/ 
microscope with variable working-distance/magnification. 
CHAMP is capable of imaging across a wide range of 
spatial scales from km’s to m’s for context imaging (Pancam 
analog) down to 3 µm/pixel at peak magnification for 
microscopy (higher spatial resolution analog to micro-

imagers 2-5 identified above). CHAMP can acquire in-focus 
images from almost any working distance relative to a target 
(~7 mm out to infinity). The resultant image resolution is 
directly correlated with the working distance - the closer the 
instrument is placed to the target, the higher the resolu-
tion/magnification of the captured image at the cost of a 
smaller field-of-view (FOV). 

The same adjustable working distance can be utilized over 
small ranges to perform microscopy and imaging of un-
improved “rough” surfaces consistent with field investiga-
tions through a process called z-stacking.  

A filter wheel provides multi-band imaging capability (RGB 
with the option for additional filters for specific bandpass 
imaging or calibration functions). LED illumination is 
incorporated to provide active illumination particularly for 
microscopy.  

Originally developed under the Mars Instrument Develop-
ment Program (MIDP) in 1998-2000 and fully integrated 
into the NASA Ames K9 rover for IS Level I and ASTEP 
(Astrobiology Science and Technology for Exploring 
Planets) robotic field testing, CHAMP has since evolved 
into a space-qualifiable design as a proposed instrument for 
the 2009 Mars Science Laboratory (MSL) mission (total 
mass <1 kg).  The MIDP version of this instrument with 
samples of acquired images is shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  
Figure 1 -  A) The MIDP CHAMP Instrument B) Deployed on the NASA ARC K9 Rover, and C) Preloaded into a Target 
Rock for Stable Microscopic Imaging; D) Infinity Image of Rocky Mountains in Boulder, CO; E)-G) Progressive Approach to 
Chalcedony Target Imaged at H) Peak Magnification; I) Copper-Rich Chalcedony Rock; J) - L) Variable Magnification Images 
of Hematite with Micro-Fossils (No Z-Stacking, as Described Below). 
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3. CHAMP OPTICAL DESIGN 

The CHAMP optical system consists of two lens cells which 
when translated relative to one another provide an adjustable 
working-distance/magnification. Figure 2 illustrates the 
CHAMP Zemax optical design with acquired images of a 
US$20 from the MIDP CHAMP instrument over most of the 
instrument’s magnification range (infinity not shown due to 
scale). Table 1 summarizes imaging performance as a 
function of working-distance. At the highest magnification, 
(3 µm/pixel resolution), the imperfections in the micro-print 
from the run of the ink into the fibers of the bill are clearly 
visible. For comparison purposes, an image at MER’s MI 
equivalent resolution (30 µm/pixel for a 12µm pixel) is also 
shown (note microprint cannot be resolved at this imaging 
resolution). 

The CHAMP optical system has been created and optimized 
with 1000+ permutations of 26 simultaneous design 
configurations (i.e different working distances/mag-

nifications at different operational temperatures) using 
Zemax optical design software [11]. The final design has 
been optimized for achromatic imaging from 460-650nm 
onto a detector with ~12 µm pixels with <1% field distortion 
and <5% variation in field intensity for all working-distances 
in the temperature range of -145°C to 50°C. FOV can be 
linearly scaled up from the current MIDP CHAMP design 
for a 5122 array. The CHAMP optical design has been 
shown by Zemax Monte Carlo sensitivity analysis to be 
tolerant of lens alignment (i.e. tilt, decenter) and manufac-
turing tolerances (i.e. radii of curvature, lens thicknesses). 
The lenses have been designed to be mounted and precision-
aligned inside two custom lens cells that can accommodate 
launch vibration and extreme thermal environments. 
Relative tolerances between these lens cells are relatively 
course (i.e., ~0.3° tilt). 

Figure 3 illustrates the relative optical performance 
(Huygens modulus of optical transfer function) for various 
image plane field points simulated in Zemax over CHAMP’s 
magnification range. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 - CHAMP Optical Design And Monochromatic Images Acquired Over CHAMP’s Magnification Range. Pixel 
resolution is quoted for a 12 µm pixel (optimal pixel size for design), however, a commercial 649x509 detector with 7.4 µm 
pixels was used to acquire images for purposes of illustrating CHAMP’s relative magnification range.  

Table 1. Summary of Proposed CHAMP Flight Instrument Imaging Characteristics (Larger FOV than MIDP). 
Microscopy ←←←← Working-Distance [mm] →→→→ Infinity  

7 8.4 10 14.5 27 87 250 2500 Infinity 
Magnification 4.4 4.0 3.0 2.0 1.0 0.3 0.1 0.01 0 

Object Plane Pixel Resolution- [µm/pixel] 2.9 3.2 4.3 6.4 12 42 124 1240 0.48 
mrad/pixel 

Flight CHAMP Field of View  (FOV) [mm] 3.0 3.3 4.4 6.6 13 43 126 1270 13.2° 
Depth of field [µm] 45 49 62 95 225 1600 104 106 ---- 

Illumination UV or White LED White LED Passive Lighting 
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4.  CHAMP FIELD IMAGING 

The variable magnification/focus optical design allows 
CHAMP to image targets with significant surface roughness 
as well as provide range-finding estimates for precision arm 
placement relative to small features. Figure 4 summarizes 
CHAMP’s imaging capability for interacting with field 
targets at handlens/microscopic resolutions. 

Microscopic viewing of rough surfaces is performed by 
sampling a three-dimensional surface over a range of closely 
spaced working distances and applying z-stack image 
compression. In such a case, an auto-focus solution for the 
target is first found by locating the best-focus position for 
lens cell 2 (Note lens cell 2 translates relative to lens cell 1 
in the mechanical implementation of the instrument). While 
a number of algorithms can be applied to find the best focus 

region for z-stacking [7] (by essentially measuring the 
degree of high spatial frequency information in an image), a 
very simple and sensitive metric that has been initially 
proposed for a flight version of CHAMP is to use the 
compressed file size of the z-stack images (see Figure 5). 
Once a best focus solution has been found, multiple raw 
images (typically 10’s of images ultimately dependent on 
surface roughness) spaced at the instrument’s depth-of-field 
(~40 micron at microscopic resolutions) are acquired about 
the best focus position (Figure 4C-G). The in-focus portions 
of these images are then software-filtered to remove the 
large volume of “out-of-focus” image data in the z-stack of 
images. This filtering process effectively compresses the z-
stack of images down into a single “in-focus” image (Fig. 
4E). To date, a Sobel of the convolution of an image has 
been used for this z-stack software compression filter, 
however, continuing work has been proposed for more 
complex algorithms to  address  minimizing any slight image 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 -  Huygens Optical Modulation Transfer Function (Wideband Filter) for Various Image Plane Field Points of Radius, 
R, over CHAMP’s Range of Magnification, M. A) M=4.4, B) M=3.0, C) M=2.0, D) M=1.0, E) M=0.3, F) M=0.01. 
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 distortion that may occur due to the subtle change in 
magnification over the range of the acquired image stack.  

Due to the inherently small FOV’s associated with 
microscopy (~mm’s as shown in Table 1), accurate arm 
placements based on CHAMP progressive context image 
information is highly desirable.  For precision arm 
placement, 3D location of a small target can be determined 
by coupling the 2D location of a target in CHAMP’s object 
plane with the working-distance of the object plane from the 
camera.  This working-distance can be estimated within the 
DOF of the lens system by measuring the relative distance 
(calibrated) between lens cells 1 and 2 for the target’s best-
focus position (Fig. 4F).  

5. ILLUMINATION SYSTEM 

The original MIDP CHAMP instrument utilized 20 white 
LED’s for illumination near and at peak magnification. This 
design has been miniaturized and upgraded (Fig. 6) with 
fiber optics to support a smaller “snub nose” in order to 
minimize the amount of material that must be removed when 
imaging an abraded surface .  

 

 

 

 

 

 

The upgraded illumination system consists of four 
independent quadrants as shown in Figure 6 which serve as a 
built in redundancy against failure of any individual 
quadrant. Any of the four quadrants can be illuminated 
independently creating oblique lighting conditions for 
viewing surface topography with either white or UV light. 
This illumination system design includes a reflective surface 
on the inside of the snub nose to optimize microscopy 
illumination intensity over a large working distance as 
shown in Figure 7A. Figure 7B illustrates the exposure time 
necessary to achieve 50% full well per pixel with a MER 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 -  A) CHAMP’s Pixel Resolution (µm/pixel) as a Function of Working Distance. B) Depth-of-field-Limited 
Precision Range-Finding Estimates with CHAMP. C)-F) Raw Monochromatic MIDP CHAMP Images of Hematite at 
Slightly Different Working Distances Compressed into E) a Single Composite In-focus “Z-stacked” Image.  
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CCD detector after light from the white-LED system 
illuminates different reflectant surfaces and returns through 
a set of MER Pancam filters (as a design case) using 
120mWe LED’s (6mW light output). In all cases, the 
detector signal-to-noise (SNR) is greater than 100.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

    

6. MECHANICAL DESIGN 

To support qualification of the CHAMP instrument 
eventually for flight, a number of mechanical design 
upgrades from the original MIDP have been baselined. 
Figure 8 illustrates the conceptual mechanical design of a 
CHAMP flight instrument. 

Optomechanical Design – A kinematic translation stage 
provides the necessary relative motion between lens cell 1 
and lens cell 2 (within the required optical tolerances) for 
CHAMP’s variable working-distance/magnification over 
extreme temperature ranges. As previously noted, the lens 
cells (optical mounts designed for extreme temperature 
ranges) are assembled and precision-aligned independently 
before being integrated into the overall assembly. The entire 
camera assembly has been designed for easy integration/de-
integration with a future host vehicle. 

Mechanical Coupling to a Target – At highest resolution 
microscopy, CHAMP can potentially be susceptible to 

image blur due to external disturbances (e.g. wind in 
terrestrial environments) applied over the exposure times 
shown in Fig. 7B. To alleviate this potential problem, three 
spring-loaded pins were incorporated into the MIDP design 
to provide a preload against a target which removes 
backlash in robotic arm gears and joints that act as soft 
springs susceptible to the external disturbances. Although 
much less of an issue for Mars and vacuum environments, 
the proposed flight version of the instrument incorporates 
the same design concept with the following modifications: 

1) Springs with a longer stroke to provide a nearly 
constant spring force during the preload. Dry lubri-
cants are used for the spring-loaded pins to increase 
life. 

2) Short spiked ends with dust wipes to minimize 
collected debris and debris in the spring mecha-
nism. The spring mechanism is sealed from the in-
ternal optical components of the instrument. 

Dust Mitigation – Given the likely and common interaction 
of CHAMP with the Mars saltation zone (zone of tumbling 
windblown particles near the Mars surface [12]) as well as 
the likelihood that CHAMP may be in the vicinity of 
particles generated from abrasion and coring processes (i.e. 
on a common robotic arm), CHAMP incorporates a dust 
cover mechanism to protect the imager when not in use. This 
mechanism uses the same mechanical design philosophy and 
motor as were used on the MER MI to provide a seal against 
the outside environment without sliding motion at the seal 
interface. 

Planetary Protection – The flight version of the CHAMP 
instrument is sealed such that the instrument (minus the dust 
cover mechanism which is separately sterilized and 
subsequently assembled) can be immersed in an alcohol bath 
up to a filtered vent in order to meet planetary protection 
requirements.. In general, this instrument has been designed 
to withstand dry heat sterilization requirements. 

7. CONCLUSIONS AND FUTURE WORK 

We have described the recent development and demonstra-
tion of the CHAMP field camera/microscope which can 
image over an extreme range of spatial scales. At peak 
magnification CHAMP has the highest spatial resolution 
currently known for a spaceflight imager in the visible band. 
Furthermore, a flight version of the instrument has been 
conceptually designed with preliminary analysis that 
supports the future development of the instrument for 
spaceflight conditions. This work appears very promising 
for enabling future robotic spacecraft missions to utilize a 
single all-purpose camera for multi-functional imaging 
across all spatial scales relevant for a mission (Fig. 9).  

 
7 mm 11 mm 15 mm 

Illumination Flux Patterns at 
Working Distances of: 

Blue to Red = Low to High Intensity 

Figure 7 - A) CHAMP Snub Nose Illumination Flux. B) 
Time to 50% Full Well using Various Pancam Filters and 
Target Reflectances with 4 White LED, Full Quadrant 
Illumination 
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Figure 8 – Concept Flight CHAMP Mechanical Design 
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The MIDP version of this instrument is currently integrated 
with the NASA Ames K9 rover (Fig. 1). Future work would 
couple the ongoing single command arm placement robotics 
software work with CHAMP imaging over a range of spatial 
scales. This software development, in particular, would 
include focal plane merging (specific to CHAMP) from two 
viewpoints to allow the “cyclops” CHAMP camera to 
produce variable baseline stereo-images across its 
magnification range (Figure 10 illustrates a stereo-image 
example for a single microscopic imager). Such a 
development would demonstrate the necessary capabilities 
for future rover reconnaissance and robotic arm  investiga-
tions using a single CHAMP camera.  

. 
Figure 9 – Future CHAMP Integration on a Deployable 
Arm/Mast Would Allow Mast and High Resolution Contact 
Instrument Imaging to be Integrated into a Single Instrument 
on a Single Robotic Appendage [14]. 

 

  
Figure 10 – Example of a Stereo-Image Produced from 
Focal Plane Merging Single Camera Images Acquired at 
Two Different Perspectives     

Finally, future work specific to the camera design would 
augment the illumination system with high power pulsed 
diodes to reduce the overall exposure times shown in Fig. 7 
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